
Better Energy-Delay Tradeoff via
Server Resource Pooling

Ioannis Kamitsos†, Lachlan Andrew∗, Hongseok Kim‡, Sangtae Ha†, and Mung Chiang†

†Princeton University, USA ∗Swinburne, Australia ‡Bell Labs, Alcatel Lucent,USA
{kamitsos, sangtaeh, chiangm}@princeton.edu landrew@swin.edu.au hongseok@ieee.org

Abstract—Multi-core architectures have supplanted single core
schemes, because they reduce energy consumption by allowing
lower clock frequencies. They provide the additional, less ex-
ploited benefit of allowing a trade-off between energy consump-
tion and delay by turning off subsets of cores. We investigate
what the benefits of this transition are in managing the trade-
off between energy consumption and delay performance, and
whether heterogeneity brings additional benefits to outweigh
its increased complexity. To do this, we study optimal sleep
policies in two settings: switching of homogeneous cores on a fast
timescale, which models multiple cores in a CPU, and switching of
heterogeneous cores on a slow timescale, which models servers
of different generations in a data center. In the homogeneous
case, we show the optimal policy is monotone hysteretic, and
that the performance is less sensitive to load estimation errors
at the design stage when at least two cores are present. In the
heterogeneous case, we provide a low complexity algorithm to
minimize the power requirements while providing a specified
minimum processing speed.

Index Terms—Multi-core, data centers, Pareto tradeoff, robust-
ness, heterogeneous.

I. INTRODUCTION

Resource pooling is a common trend as a computer system
scales up. Multi-core computers, server farms, and generally,
any system that processes jobs with multiple processing units
with a queue storing jobs-in-waiting, share a common oper-
ational goal: to minimize job finishing time (which we call
delay) and to minimize energy expenditure in finishing each
job. However, these two objectives are intrinsically in conflict,
and there exists an energy-delay tradeoff. For concreteness, we
speak of investigating the tradeoff in the context of multi-core
in a server, but the model applies to any case of resource
pooling.

A useful technique for energy saving is turning off the
cores when they are not needed. This simple method is highly
effective because a significant amount of energy is wasted due
to low utilization [1]; for example, a typical data center has
utilization of 20%-30% on average [2], [3].

In resource pooling, all available resources are in one com-
mon pool and can be collectively controlled. We compare a c-
core system with a benchmark of a single core which processes
c times faster and uses c times more power than one of the c
cores. We seek to answer the following questions: How much
more efficient or simple is the tradeoff between delay and
energy consumption in a multi-core architecture? Does this
benefit require cores to be able to be turned off individually?

Are further benefits possible by introducing heterogeneity in
the speed and power of cores?

The design of an optimal “sleeping” policy is nontrivial for
two reasons: (1) the best tradeoff point depends on the relative
importance of energy-saving vs. fast job processing, and (2) it
takes both time and energy to turn a core on or off. The latter
implies that the optimal policy may be to remain on but idle
rather than turning off, if there is a high chance of having to
turn on again soon.

Energy saving mechanisms exploiting underutilization have
long been investigated in the context of single core servers,
e.g.[4], [5], [6], [7]. For example, [8] used dynamic program-
ming to design the optimal policy for a stochastic (Poisson)
workload that turns on/off a single core on the timescale
of job arrivals, considering delay performance and energy
consumption. Much less analytic work has been done in the
multi-core setting, although see [9], [10], [11], [12]. This
paper extends [8] to the case of multiple homogeneous cores
and then considers on a slower time-scale the problem of
determining the optimal combination of heterogeneous servers
to have on.

For a single core, the optimal policy turns a server on when
the queue occupancy exceeds a threshold, and off when the
queue drains. In a c-core system, this could become much
more complicated, with separate thresholds for every possible
state of the cores. However, we show that with homogeneous
cores, the policy retains the monotone hysteretic structure
established in [8], and the optimal policy for a given load
is characterized by c thresholds for turning cores on and c for
turning them off.

Moreover, the added complexity is compensated by im-
proved performance. It can give a better tradeoff between
energy and delay, and the system becomes more robust to load
estimation error, which improves performance under uncertain
or time-varying load.

Large scale data centers today possess a scale and het-
erogeneity that deserves further study. In Section V, we
investigate the case where the processors are heterogeneous in
the sense that they are characterized by different processing
speed and power consumption. Also, the scale is large enough
that the timescale needs to be slower compared with job
arrivals, and so the switching cost is ignored. The problem
is formulated as a knapsack problem, which we solve via an
efficient greedy algorithm. Numerical results show that the

suboptimality gap does not exceed 6%.
Previous studies of policies for turning on/off for multi-

server architectures include Deng and Purvis [13], which
investigated the problem of parallelizing network applications
without considering energy-related issues. Li and Alfa [14]
considered an M/M/c system that turns all servers on at the
same time and turns them all off when they are all idle. They
derived a closed form for the optimal threshold of turning on
the servers, when the only costs are switching costs and delay.
Their problem differs from the one considered here, since we
do not require all cores to turn on and off simultaneously, or
even to turn off at all, Instead, we impose an energy cost for
each core which is on.

Our results are summarized below.

1) Theorem 1 shows that the optimal policy for controlling
c homogeneous cores is characterized by 2c thresholds.
This structure simplifies implementation.

2) We quantify the benefit from the flexibility of being
able to turn cores off independently, by comparing the
energy-delay tradeoff to that of a hypothetical single
core server.

3) The optimal policy depends on the mean load. Sec-
tion IV-C shows that, for more cores the performance
is less sensitive to differences between the actual load
and the load for which the policy was optimized.

4) Heterogeneity of cores can further sweeten the energy-
delay tradeoff. Section V shows that a simple greedy al-
gorithm can select subset of heterogeneous cores which
gives performance within 6% of the optimal selection.

II. HOMOGENEOUS CORES

Let us first consider homogeneous cores, which have the
same processing capacity and associated energy cost. We fur-
ther assume that cores can be turned on and off independently,
and the workload is a Poisson process of exponentially sized
jobs. We will formulate a Markov decision process (MDP) to
minimize the objective of a weighted sum of delay, energy
due to processing, and switching costs. Decisions on turning
cores on and off are made on the timescale of job arrivals.

We consider a server with c independent cores, a finite
buffer of size B and c + 1 modes. The mode (0, 1, 2, . . . , c)
denotes the number of cores that are ON. The state space is
Ω = {0, 1, 2, . . . , c}× {0, 1, 2, . . . , B}. The system is in state
i = (W,Q) if there were W cores ON in the previous time
interval and currently there are Q jobs in the system. The
action w ∈ F = {0, 1, . . . , c} determines the number of cores
ON in the current time interval.

Every core consumes a constant power PCPU when ON,
and no power when OFF. Turning a core from OFF to ON
or vice versa consumes energy Ech. We compare against a
hypothetical single core server consuming power cPCPU , with
switching cost cEch.

We assume that jobs arrive at the server according to a Pois-
son process with rate λ. Job service times are exponentially
distributed with mean 1/s, where s is the service rate of one

core. If a server is available (Q ≤ p), the job enters service
immediately.

The memoryless property of the interarrival times allows
us to formulate the problem as a Markov Decision Process
(MDP). The solution to the MDP is a policy denoted by p,
indicating how many cores should be ON (the action) in each
state. The action in state i = (W,Q) is denoted by p(i), or,
equivalently, p(W,Q). By the Markov structure, the policy
only changes when a job arrives or departs. Note that the
action is deemed to occur immediately after the transition to a
given state, so that the number of servers on in state (W,Q) is
p(W,Q), not W . This means that the current number of cores
ON is not considered part of the state.

The state evolves as follows:

W (t+ τ) = p (W (t), Q(t)) , (1)

Q(t+ τ) =

{
Q(t) + 1, if an arrival occurs,
Q(t)− 1, if a departure occurs.

(2)

where t denotes the current time and t+ τ refers to the time
of the next event. Then, the transition probabilities at state
(W,Q) with policy p(W,Q) and 0 < Q < B are:

Pr[(W,Q)→ (p(W,Q), Q+ 1)] =
λ

λ+ sp(W,Q)
, (3)

Pr[(W,Q)→ (p(W,Q), Q− 1)] =
sp(W,Q)

λ+ sp(W,Q)
. (4)

The stage cost g(i, p(i)) at state i under policy p(i) con-
sists of two components, g1(i, p(i)) and g2(i, p(i)). The first
component, the running cost per unit time, is a weighted sum
of the power cost due to the active cores and the delay cost
incurred by the jobs waiting to be processed. The delay cost
is directly proportional to the number of jobs waiting. Hence,

g1(i, p(i)) = (p(i)PCPU + rQi), (5)

where r is the tradeoff parameter between the energy cost
and the cost of delay. The second component captures the
switching cost, which is the energy that is spent turning cores
on or off. It is given by

g2(i, p(i)) = |Wi − p(i)|Ech (6)

where Ech is the energy required to turn a core on or off.
Since the duration of a stage depends on the policy, it is

convenient to use uniformization [15] to convert this con-
tinuous time problem into a discrete time one. The cost per
uniformized transition is given by

ĝ(i, p(i)) =
1

β + v
(p(i)PCPU + rQi) + |Wi − p(i)|Ech, (7)

where the uniformized rate is β + v for some β > 0, and
v = λ+ cs.

Since we are interested in the remaining cost over all future
time, the cost-to-go will be infinite. To enable us to optimize
the time-average cost, we approximate this objective by a
discounted objective, with a discount rate α close to 1. In the
context of on-line adaptation of the policy, this discounting

also provides robustness against uncertainty in future loads.
We write α = v/(β+ v) and select a small β << v to ensure
α ≈ 1.

Our objective is then to minimize the average discounted
sum of costs [15], given by

V (i) = min
p(i)

g1(i, p(i))
β + v

+ g2(i, p(i)) + α
∑
j∈Ω

M̂
p(i)
i→jV (j)

 ,

(8)
where M̂p(i)

i→j denotes the uniform transition probability going
from state i to state j under policy p(i) and is given in [15].
The average discounted sum of costs consists of the current
stage cost plus the discounted average of all future costs.

The optimal solution to our problem as well as other related
results will be presented in the next section.

III. OPTIMAL CONTROL POLICY

The following definitions are important for the main analytic
results.

Definition 1: A policy p is called hysteretic if for all a ∈ F ,
p(a,Q) = γ implies p(γ,Q) = γ.

Definition 2: [16] A hysteretic policy p is called monotone
if there are lα, uα, α = 1, 2, . . . , |A| + 1, where |A| is the
set of service levels, with lα ≤ uα for α = 1, 2, . . . , |A|+ 1,
lα ≤ uα+1 for α = 1, 2, . . . |A|, lα = uα = 0 and l|A|+1 =
u|A|+1 =∞, such that for all (i, d) ∈ Ω, we have

p(i, d) = d, if ld ≤ i < ud+1

p(i, d) = p(i, d+ 1), if i ≥ ud+1

p(i, d) = p(i, d− 1), if i < ld

The structure of a monotone hysteretic policy is shown in
Fig. 1. Such a policy can be summarized by only 2c thresholds
(c for turning cores on, and c for turning cores off), instead of
max(W) × max(Q) individual policies. This makes policies
much more efficient to calculate and store. This allows policies
to be pre-computed, and an appropriate policy to be chosen
for the current job arrival rate.

Based on the problem formulation discussed in the previous
section the following result can be shown using the same
techniques as in [8]

Theorem 1: The optimal policy for the above MDP is a
monotone hysteretic policy.
Given that many data centers are underutilized, it is important
to understand the benefits of the multi-core approach over the
single core one for low traffic load.

Proposition 1: For low traffic load (λ→ 0) the ratio of the
mean cost in the single core case over the mean cost for a
multi-core case asymptotically converges to c.

The optimal policy can be found by value iteration [15].

IV. NUMERICAL EVALUATION

A. Optimal Policy Structure

The following simulations consider jobs arriving to a 4-core
server with power consumption equal to PCPU = 62.5 W per
core. The energy vs delay tradeoff parameter r was 5 W/job

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14

O
pt

im
al

 #
 o

f c
or

es
 O

N

Number of jobs

cores ON
 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14

O
pt

im
al

 #
 o

f c
or

es
 O

N

Number of jobs

cores ON

Fig. 1. Optimal policy for a 4-core server under traffic load 20%. The graph
to the left refers to the ON policy while the graph to right refers to the OFF
policy. Note the monotone hysteretic structure of the policy, with the ON and
OFF thresholds.

 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

 0 1 2 3 4 5 6 7 8
En

er
gy

 c
om

su
m

pt
io

n
(K

W
h)

Average delay (sec)

c=1
c=4
c=8

Fig. 2. Accumulated energy over 5 × 105 seconds vs delay, for 1, 4 and
8 cores and variable cost of delay, at 20% load. Increasing the number of
cores improves performance compared to single core case. When the queue
occupancy is low, having slower servers outweighs the finer control.

and the switching cost was roughly Ech = 100 J. We consider
large jobs, with average duration 2 seconds. Up to B=100 jobs
can be buffered awaiting service.

Initially, we tested the system under relatively low traffic
load (20% of peak), which models an underutilized server
in a data center. The optimal policy, presented in Fig. 1,
is clearly monotone hysteretic, as Theorem 1 predicted. It is
characterized by one ON threshold per core. With the traffic
load of 20%, it is optimal to turn on 1–4 cores when there
are θ1 = 2, θ2 = 5, θ3 = 8 and θ4 = 12 jobs, respectively.
When the load is high, it is typically optimal to turn cores on
at lower occupancies, since future arrivals are more likely.

Remark 1: Note that when the load is moderately high, it
is never optimal to turn off all cores. This is useful from an
operational point of view, since at least one core is then always
available to process administrative tasks, such as enqueueing
jobs. For a single core, this only occurs for very high load,
when no energy saving is possible.

B. Energy/delay tradeoff

It is interesting to observe the Pareto optimal tradeoff
between energy consumption and average delay. Fig. 2 com-
pares the performance of a 4-core and 8-core with that of a
single core server, under traffic load of 20%. The improved
performance of the multi-core systems comes from the finer
granularity of control. In particular, the use of a 4-core system

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

En
er

gy
 s

av
ed

 (%
)

Traffic load

c=1
c=4
c=8

Fig. 3. Fraction of energy saved over traffic load for different number of
cores. Energy savings are significant for lower loads, and increase when we
control more cores.

results in reducing of energy consumption by almost 30% for
given average delay compared to the single core architecture.

Interestingly, there are two cases in which additional cores
might present a disadvantage. The root cause of these is the
well known fact that an M/M/c queue has a higher mean
delay than an M/M/1 queue with a server c times as fast,
since the aggregate speed is lower at low queue occupancies.
First, if the activation policy is suboptimal, such as requiring
all cores to switch on or off simultaneously, then multi-core
loses its benefits. Second, if the expected number of jobs in
the system is much lower than the number of cores, then
the disadvantage of having slower servers outweighs the finer
control; this occurs at the high-energy/low-delay point in the
tradeoff when there are many cores. However, when job sizes
are sufficiently heavy tailed, an M/G/c queue has lower mean
delay than a faster M/G/1 queue (even without sleeping) [21];
we expect that sleep considerations will never decrease the
optimal number of cores. See also [22] for a discussion of
tails of response times.

Fig. 3 presents how the fraction of energy saved varies with
traffic load for different number of cores. For all loads, the
higher the number of cores we can control, the higher the
fraction of energy saved. Naturally, for all numbers of cores,
the higher the traffic load the lower the energy savings.

C. Robustness

In practice, the actual load is not known a priori, and its
estimation is often noisy and unreliable. Robustness against
misestimating the traffic load is as important as Pareto op-
timality of the tradeoff. For example, it was recently shown
in [17] that increased dynamic flexibility in the power/speed
tradeoff significantly increases robustness to such errors. We
demonstrate that benefits to robustness are obtained by being
able to turn on or off multiple cores as server resources
are pooled. Adopting a “delayed-off” policy such as the
one described in [10] can increase the system’s robustness,
however it doesn’t allow for jobs to be queued, and such a
policy is only optimal in the limit of large systems.

Suppose the system is designed for a particular load ρ0 and
the optimal average cost when it operates under this load is
V0. Also suppose that the system is operated with an actual

 600

 620

 640

 660

 680

 700

 720

 740

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

co
st

Design traffic load

c=1
c=4
c=8

Fig. 4. Optimal cost under traffic load 50% over design traffic load. The
flatter curve for multi-core shows lower sensitivity to the load estimate.

load of ρ 6= ρ0 and the average cost under this load is V .
Then we say that a system is more robust than another if the
average cost curve over traffic load is flatter.

The following experiment demonstrates this. Suppose we
have a system with c independent cores. We calculate the
optimal policy for different traffic loads and then we let the
system evolve under traffic load 50%. Then we calculate the
optimal expected cost as

E[V] = E[EC] + rE[D] (9)

where E[EC] stands for the average energy consumption and
E[D] stands for the average delay. Fig. 4 shows how the op-
timal expected cost under traffic load 50% varies with design
traffic load (the optimal policy for each case is calculated under
the respective traffic load).

It is now readily seen that having multiple cores improves
robustness to traffic load misestimation. In particular, the
variation from the optimal cost achieved under traffic load
50% decreases, giving a flatter plot. It can be observed that
the finer granularity of control provides an almost 75% “more
robust” system. Note, however, that having 8 cores does not
further improve the robustness over having four cores. Only
a small amount of flexibility is required to obtain most of the
benefits.

We also observe that for the single core case the system
is more sensitive to traffic load underestimation, whereas for
higher number of cores the system is more sensitive to load
overestimation than underestimation.

V. HETEROGENEOUS SERVERS

In the previous sections we studied the case of homo-
geneous cores/servers where we make optimal decisions on
the timescale of arrivals/departures. However, when we have
hundreds or thousands of processors (e.g. in large scale data
centers) it is somewhat impractical to make decisions for
turning on/off different processors every time we have an
arrival or a departure. In this section, we take into account the
case of a large scale data center, containing several different
types of processors, with many processors of the same type.
Our objective is to find the optimal combination of processors
that can be put to sleep in order to minimize the total power
consumption given a fixed total processing speed requirement.
The decision on which processors need to be on, is not made
on an arrival/departure timescale, but on a slower one.

Specifically, suppose we have a collection N of N different
types of heterogeneous processors, with discrete processing
speeds s1, s2, . . . , sN , measured in packets per second (pps),
and power consumption P1, P2, . . . , PN . Also suppose that
we have bj identical copies of processors of type j, j =
1, 2, . . . , N , so that c =

∑N
j=1 bj . Then we want to select

xj processors of each type j that can stay ON, such that the
total power consumption is minimized given that the total
processing speed is higher than a fixed speed requirement
s0. In other words, our objective is to solve the following
optimization problem.

min
N∑
j=1

Pjxj (10)

s.t.
N∑
j=1

sjxj ≥ s0 (11)

0 ≤ xj ≤ bj , (12)
xj integer , j = 1, 2, . . . , N (13)

A. Greedy algorithm

When the number of processors is large, the following
greedy algorithm gives an almost optimal solution.

1) Sort types 1, 2, . . . , N in decreasing order of Pj

sj
.

2) Find a threshold k∗ satisfying

k∗ = min

k :
k−1∑
j=1

sjbj ≤
N∑
j=1

sjbj − s0

3) Set xj = bj if Pj

sj
< Pk∗

sk∗
, or xj = 0 if Pj

sj
> Pk∗

sk∗
, and

xk∗ =

⌊
bk∗ −

∑N
j=1 sjbj − s0 −

∑k∗−1
j=1 sjbj

sk∗

⌋
.

The complexity of the greedy algorithm is O(N logN),
from the sorting.

This formulation is a generalization of that of [18], which
had unlimited servers of each type. It is also a special case of
the multi-dimensional knapsack problem considered in [19].
Both of these papers consider greedy algorithms closely re-
lated to the above. In [18], conditions were found for the
greedy algorithm to be optimal, and an exact expression was
found for the suboptimality in other cases. The suboptimality
is bounded by the quantization resolution; that is, the cost of
a single machine. In the context of large data centers, this
approximation error becomes negligible.

B. Numerical evaluation

We now investigate how well the greedy algorithm pre-
sented above performs compared to the optimal solution that
can be found via a dynamic programming approach. Suppose
we have a data center consisting of several type processors
(multiple processors per type), which are given in I [20].

Assuming that there are 10 servers per type, Fig. 5 presents
the greedy and optimal solution for different speed requirement

TABLE I
PROCESSOR TYPES

Type Description Speed Power
(kpps) (W)

1 AMD Athlon 64 600 70
1 core, 2.0 GHz, RAM: 667 MHz

2 AMD Athlon 64 800 80
1 core, 2.2 GHz, RAM: 200 MHz

3 AMD Opteron 900 190
2 core, 1.8 GHz, RAM: 400 MHz

4 AMD Opteron 1400 205
4 core, 1.8 GHz, RAM: 400 MHz

5 Xeon 5050 “Dempsey” 1600 250
2 core, 3.0 GHz, RAM: 533 MHz

6 Xeon 5050 “Dempsey” 1800 280
2 core, 3.0 GHz, RAM: 533 MHz

varying from 0.8 Mpps up to 70 Mpps, which corresponds to a
speed almost as high as if all the servers were turned on. Note
that, as mentioned before, the speed unit for the processors
under consideration is packets per second. It can be observed
that the suboptimality gap is particularly small for the whole
range of speed requirement, given that it never exceeds 6%.
The efficiency of the greedy algorithm comes from the fact
that we have multiple servers of the same type.

Finally, Fig. 6 shows the gain in terms of power consump-
tion from using the heterogeneous setup described in Table I
(with 10 processors per type) over a homogeneous setup where
each server consumes the average power and runs on an
average speed. This gain is much more significant when the
speed requirement in the data center is lower. Hence, when the
speed requirement is low (something required to save energy),
using the heterogeneous setup described in the previous section
is much more efficient than using an “average” homogeneous
setup. Knowing that heterogeneity helps may also lead to
savings, since it encourages the operator to keep slower old-
generation equipment around longer.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

H
et

er
og

en
eo

us
 s

et
up

 g
ai

n
(%

)

Speed requirement (Mpps)

Fig. 6. Gain from using the heterogeneous setup described in Table ??
(10 processors of each type) over an average homogeneous setup where each
server consumes the average power and runs on an average speed.

VI. CONCLUSIONS

The optimal sleep policy for controlling multiple homo-
geneous cores has a useful monotone hysteretic structure.
Unlike the single core case, it can be optimal to retain one
or more cores ON even at moderate load; that is important

 0

 10

 20

 30

 40

 50

I II III IV V VI VII VIII

of

 s
er

ve
rs

 o
f e

ac
h

ty
pe

 th
at

 a
re

 O
N

Cases

80W 80W

1080W 1080W

2525W 2395W

4110W 3875W

5510W 5420W

7100W 6980W

8600W 8570W 10560W10560WType6
Type5
Type4
Type3
Type2
Type1

Fig. 5. Greedy (left) and optimal (right) solution for different speed requirements. Case I: s0 = 0.8Mpps, Case II:s0 = 10Mpps, Case III:s0 = 20Mpps,
Case IV:s0 = 30Mpps, Case V: s0 = 40Mpps, Case VI: s0 = 50Mpps, Case VII: s0 = 60Mpps, Case VIII: s0 = 70Mpps

for implementations, since one core must often be active for
housekeeping tasks.

The performance of a homogeneous multi-core system is
also less sensitive to mismatch between the actual load and
the load for which it is optimized. Having two cores provides
almost as much benefit as having a large number of cores.
This benefit vanishes if all cores must be switched on or off
simultaneously.

Systems with heterogeneous cores are much more difficult
to manage dynamically. Instead of switching cores frequently,
substantial savings can be obtained by setting the number of
active cores to match the average load. For this, a simple
greedy algorithm is sufficient. In this context, heterogeneity
provides an advantage over a system in which all servers have
the average performance.

REFERENCES

[1] J. Mogul, “Improving energy efficiency for networked applications”, in
Architectures for Networking and Comunications Systems (ANCS), 2007.

[2] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, and R.
Rajamony, “The case for power management in web servers”, in Power
Aware Computing, January 2002.

[3] D. Meisner, B.T. Gold and T.F. Wenisch, “PowerNap: Eliminating Server
Idle Power”, In Proc. Int. Conf. Arch. Support Prog. Lang. Op. Sys., pp.
205-216, 2009.

[4] L. Chiaraviglio, M. Mellia and F. Neri, “Reducing Power Consumption
in Backbone Networks”, In Proc. ICC, Dresden, Germany, 2009.

[5] K. Pruhs, P. Uthaisombut and G. Woeginger, “Getting the best response
for your erg”, In Scandinavian Worksh. Alg. Theory, 2004.

[6] A. Wierman, L. L. H. Andrew and A. Tang, “Power-Aware Speed
Scaling in Processor Sharing Systems”, In Proc. IEEE INFOCOM, April
2009.

[7] N. Vasic and D. Kostic, “Energy-Aware Traffic Engineering”, In EPFL
Technical Report NSL-REPORT-2008-004, 2008.

[8] I. Kamitsos, L. L. H. Andrew, H. Kim, and M. Chiang, “Optimal
Sleeping Patterns for Serving Delay Tolerant Jobs”, in Proc. e-Energy,
pp. 31-40, Passau, Germany, April 2010.

[9] S. Albers, F. Müller and Swen Schmelzer, “Speed scaling on parallel
processors,” in Proc SPAA, 2007.

[10] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch, “Optimality
analysis of energy-performance trade-off for server farm management,”
Perform. Eval., vol. 67, no. 11, pp. 1155 – 1171, 2010.

[11] K. Pruhs and C. Stein, “How to schedule when you have to buy your
energy,” in Approx., Randomiz. Comb. Opt. Alg. Techniq., LNCS 6302,
pp 352–365, 2010.

[12] M. Lin, A. Wierman, L. L. H. Andrew and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” Proc. IEEE INFOCOM,
2011.

[13] J. Deng and M. Purvis, “Queueing Analysis for Multi-Core Performance
Improvement: Two Case Studies”, in Proc. Australasian Telecommuni-
cation Networks and Applications Conference, 2007.

[14] W. Li and A. Alfa, “Optimal Policies for M/M/m Queue with Two
Different Kinds of (N , T)-Policies”, in Naval Research Logistics, vol.
47, pp. 240-258, 2000.

[15] D.P. Bertsekas, “Dynamic Programming and Optimal Control”, vol. 2,
Athena Scientific, 2007.

[16] S.K. Hipp, and U.D. Holzbaur, “Decision Processes with Monotone
Hysteretic Policie”, Op. Res. vol. 36, no. 4, pp. 585-588, Jul-Aug 1988.

[17] L. L. H. Andrew, M. Lin, and A. Wierman, “Optimality, fairness and
robustness in speed scaling designs,” in Proc. ACM SIGMETRICS, 2010.

[18] M. J. Magazine, G. L. Nemhauser and L. E. Trotter, “When the greedy
solution solves a class of knapsack problems”, In Op. Res., vol. 23, no.
2, Mar.-Apr., 1975.

[19] Y. Ak cay, H. Li and S. H. Xu, “Greedy algorithm for the general
multidimensional knapsack problem”, In Ann. Oper. Res, vol. 150, pp.
17-29, 2007.

[20] R.Bolla, R. Bruschi and A. Ranieri, “Green support for PC-based soft-
ware router: performance evaluation and modeling”, In Proc. ICC’09,
pp 2200-2205.

[21] A. Scheller-Wolf and R. Vesilo, “Structural interpretation and derivation
of necessary and sufficient conditions for delay moments in FIFO
multiserver queues”, Queueing Systems, vol. 54, no. 3, pp. 221-232,
2006.

[22] J. Nair, A. Wierman and B. Zwart, “Tail-robust scheduling via limited
processor sharing”, Perform. Eval., vol. 67, no. 11, pp. 978–995, Nov,
2010.

