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Abstract—It has recently been proposed that Internet energy
costs, both monetary and environmental, can be reduced by
exploiting temporal variations and shifting processing to data
centers located in regions where energy currently has low cost.
Lightly loaded data centers can then turn off surplus servers.
This paper studies online algorithms for determining the number
of servers to leave on in each data center, and then uses these
algorithms to study the environmental potential of geographical
load balancing (GLB). A commonly suggested algorithm for this
setting is “receding horizon control” (RHC), which computes the
provisioning for the current time by optimizing over a window
of predicted future loads. We show that RHC performs well
in a homogeneous setting, in which all servers can serve all
jobs equally well; however, we also prove that differences in
propagation delays, servers, and electricity prices can cause RHC
perform badly, So, we introduce variants of RHC that are guar-
anteed to perform as well in the face of such heterogeneity. These
algorithms are then used to study the feasibility of powering a
continent-wide set of data centers mostly by renewable sources,
and to understand what portfolio of renewable energy is most
effective.

I. INTRODUCTION

Energy consumption of data centers is a major concern
to both operators and society. Electricity for Internet-scale
systems costs millions of dollars per month [1] and, though IT
uses only a small percentage of electricity today, the growth
of electricity in IT exceeds nearly all sectors of the economy.
For these reasons, and more, IT must play its part in reducing
our dependence on fossil fuels.

This can be achieved by using renewable energy to power
data centers. Already, data centers are starting to be powered
by a greener portfolio of energy [2], [3], [4]. However, achiev-
ing a goal of powering data centers entirely with renewable
energy is a significant challenge due to the intermittency and
unpredictability of renewable energy. Most studies of powering
data centers entirely with renewable energy have focused on
powering individual data centers, e.g., [5], [6]. These have
shown that it is challenging to power a data center using only
local wind and solar energy without large-scale storage, due
to the intermittency and unpredictability of these sources.

The goal of this paper is twofold: (i) to illustrate that the ge-
ographical diversity of Internet-scale services can significantly
improve the efficiency of the usage of renewable energy, and
(ii) to develop online algorithms that can realize this potential.

Many papers have illustrated the potential for using “ge-
ographical load balancing” (GLB) to exploit the diversity of
Internet-scale service and provide significant cost savings for
data centers; see [1],[7]–[9]. The goal of the current paper is
different. It is to explore the environmental impact of GLB
within Internet-scale systems. In particular, using GLB to re-
duce cost can actually increase total energy usage: reducing the
average price of energy shifts the economic balance away from
energy saving measures. However, more positively, if data
centers have local renewable energy available, GLB provides

a huge opportunity by allowing for “follow the renewables”
routing.

Research is only beginning to quantify the benefits of
this approach, e.g., [10] and [11]. Many questions remain.
For example: Does “follow the renewables” routing make it
possible to attain “net-zero” Internet-scale services? What is
the optimal mix of renewable energy sources (e.g. wind and
solar) for an Internet-scale service? To address these questions,
we perform a numerical study using real-world traces for
workloads, electricity prices, renewable availability, data center
locations, etc. Surprisingly, our study shows that wind energy
is significantly more valuable than solar energy for “follow
the renewables” routing. Commonly, solar is assumed to be
more valuable given the match between the peak traffic period
and the peak period for solar energy. Wind energy lacks this
correlation, but also has little correlation across locations and
is available during both night and day; thus the aggregate wind
energy over many locations exhibits much less variation than
that of solar energy [12].

Our numerical results suggest that using GLB for “follow
the renewables” routing can provide significant environmental
benefits. However, achieving this is a challenging algorithmic
task. The benefits come from dynamically adjusting the routing
and service capacity at each location, but the latter incurs
a significant “switching cost” in the form of latency, energy
consumption, and/or wear-and-tear. Further, predictions of the
future workload, renewable availability, and electricity price
are inaccurate beyond the short term. Thus online algorithms
are required for GLB.

Although the distant future cannot be known, it is often
possible to estimate loads a little in the future [13]. These
predictions can be used by algorithms such as Receding Hori-
zon Control (RHC), also known as Model Predictive Control,
to perform geographical load balancing. RHC is commonly
proposed to control data centers [14], [15] and has a long
history in control theory [16]. In RHC, an estimate of the near
future is used to design a tentative control trajectory; only the
first step of this trajectory is implemented and, in the next time
step, the process repeats.

Due to its use in systems today, we begin in Section III
by analyzing the performance of RHC applied to the model
of Section II. In particular, we study its competitive ratio: the
worst case ratio of the cost of using RHC to the cost of using
optimal provisioning based on perfect future knowledge. We
prove that RHC does work well in some settings, e.g., in a
homogeneous setting (where all servers are equally able to
serve every request) RHC is 1+O(1/w)-competitive, where w
is the size of the prediction window. This can be much tighter
than the competitive ratio of 3 obtained by schemes unaware
of future loads [17]. However, in general, RHC can perform
badly for the heterogeneous settings needed for geographical
load balancing. In general, RHC is 1 + Ω(β/e0)-competitive,
where β measures the switching cost and e0 is the cost of



running an idle server. This can be large and, surprisingly,
does not depend on w. That is, the worst case bound on RHC
does not improve as the prediction window grows.

Motivated by the weakness of RHC in the general context
of geographical load balancing, we design a new algorithm in
Section III called Averaging Fixed Horizon Control (AFHC).
AFHC works by taking the average of w + 1 Fixed Hori-
zon Control (FHC) algorithms. Alone, each FHC algorithm
seems much worse than RHC, but by combining them AFHC
achieves a competitive ratio of 1 + O(1/w), superior to that
of RHC. We evaluate these algorithms in Section IV under
real data center workloads, and show that the improvement in
worst-case performance comes at no cost to the average-case
performance.

Note that the analysis of RHC and AFHC applies to a very
general model. It allows heterogeneity among both the jobs
and the servers, whereas systems studied analytically typically
have homogeneous servers [17]–[19] or disjoint collections
thereof [20].

II. MODEL

Our focus is on understanding how to dynamically pro-
vision the (active) service capacity in geographically diverse
data centers serving requests from different regions so as to
minimize the “cost” of the system, which may include both
energy and quality of service. In this section, we introduce
a simple but general model for this setting. Note that the
model generalizes most recent analytic studies of both dynamic
resizing within a local data center and geographical load
balancing among geographically distributed data centers, e.g.,
including [10],[21],[17],[1].

A. The workload

We consider a discrete-time model whose timeslot matches
the timescale at which routing decisions and capacity provi-
sioning decisions can be updated. There is a (possibly long)
interval of interest t ∈ {1, . . . , T}. There are J geographically
concentrated sources of requests, and the mean arrival rate at
time t is denoted by λt = (λt,j)j∈{1,...,J}, where λt,j is the
mean request rate from source j at time t. We set λt = 0
for t < 1 and t > T . In a real system, T could be a year, a
timeslot could be 10 minutes.

B. The Internet-scale system

We model an Internet-scale system as a collection of S
geographically diverse data centers, where data center s ∈ S
is modeled as a collection of Ms homogeneous servers.1 We
seek the values of two key GLB parameters:

(i) λt,j,s, the amount of traffic routed from source j to data

center s at time t, such that
∑S

s=1 λt,j,s = λt,j .
(ii) xt = (xt,s)s∈{1,...,S}, where xt,s ∈ {0, . . . , Ms} is the

number of active servers at data center s at time t.

The objective is to choose λt,j,s and xt to minimize the “cost”
of the system, which can be decomposed into two components:

(i) The operating cost incurred by using active servers. It
includes both the delay cost (revenue loss) which depends
on the dispatching rule through network delays and the

1Note that a heterogeneous data center can simply be viewed as multiple
data centers, each having homogeneous servers.

load at each data center, and also the energy cost of the
active servers at each data center with particular load.

(ii) The switching cost incurred by toggling servers into and
out of a power-saving mode between timeslots (including
the delay, migration, and wear-and-tear costs).

We describe each of these in detail below.
1) Operating cost: The operating cost is the sum of the

delay cost and the energy cost. Each is described below.
Delay cost: The delay cost captures the lost revenue

incurred because of the delay experienced by the requests. To
model this, we define rt(d) as the lost revenue associated with
a job experiencing delay d at time t, which is an increasing and
convex function. The delay has two components: the network
delay experienced while the request is outside of the data
center and the queueing delay experienced while the request
is at the data center.

We model the network delays by a fixed delay δt,j,s expe-
rienced by a request from source j to data center s during
timeslot t. We make no requirements on the structure of the
δt,j,s. We assume that these delays are known within the
prediction window w.

To model the queueing delay, we let qs(xt,s,
∑

j λt,j,s)
denote the queueing delay at data center s given xt,s active
servers and an arrival rate of

∑

j λt,j,s. Further, for stability,

we must have that
∑

j λt,j,s < xt,sµs, where µs is the
service rate of a server at data center s. Thus, we define
qs(xt,s,

∑

j λt,j,s) = ∞ for
∑

j λt,j,s ≥ xt,sµs.
Combining the above gives the following model for the total

delay cost Dt,s at data center s during timeslot t:

Dt,s =

J
∑

j=1

λt,j,srt

(

qs

(

xt,s,
∑

j′
λt,j′,s

)

+ δt,j,s

)

. (1)

We assume that Dt,s is jointly convex in xt,s and λt,j,s. Note
that this assumption is satisfied by most standard queueing
formulae, e.g., the mean delay under M/GI/1 Processor Sharing
(PS) queue and the 95th percentile of delay under the M/M/1.

Energy cost: To capture the geographic diversity and vari-
ation over time of energy costs, we let ft,s(xt,s,

∑

j λt,j,s)
denote the energy cost for data center s during timeslot t
given xt,s active servers and arrival rate

∑

j λt,j,s. For every

fixed t, we assume that ft,s(xt,s,
∑

j λt,j,s) is jointly convex in
xt,s and λt,j,s. This formulation is quite general, and captures,
for example, the common charging plan of a fixed price per
kWh plus an additional “demand charge” for the peak of the
average power used over a sliding 15 minute window [22].
Additionally, it can capture a wide range of models for server
power consumption, e.g., energy costs as an affine function of
the load, see [23], or as a polynomial function of the speed,
see [24], [25]. One important property of ft,s for our results
is e0,s, the minimum cost per timeslot for an active server of
type s. i.e., ft,s(xt,s, ·) ≥ e0,sxt,s.

The total energy cost of data center s during timeslot t is

Et,s = ft,s

(

xt,s,
∑

j
λt,j,s

)

. (2)

2) Switching cost: For the switching cost, let βs be the cost
to transition a server from the sleep state to the active state at
data center s. We assume that the cost of transitioning from
the active to the sleep state is 0. If this is not the case, we can
simply fold the corresponding cost into the cost βs incurred



in the next power-up operation. Thus the switching cost for
changing the number of active servers from xt−1,s to xt,s is

d(xt−1,s, xt,s) = βs(xt,s − xt−1,s)
+,

where (x)+ = max(0, x). The constant βs includes the costs
of (i) the energy used toggling a server, (ii) the delay in
migrating state, such as data or a virtual machine (VM), when
toggling a server, (iii) increased wear-and-tear on the servers
toggling, and (iv) the risk associated with server toggling. If
only (i) and (ii) matter, then βs is either on the order of the
cost to run a server for a few seconds (waking from suspend-
to-RAM or migrating network state [26] or storage state [27]),
or several minutes (to migrate a large VM [28]). However, if
(iii) is included, then βs becomes on the order of the cost to
run a server for an hour [29]. Finally, if (iv) is considered then
our conversations with operators suggest that their perceived
risk that servers will not turn on properly when toggled is high,
so βs may be even larger.

C. Cost optimization problem

Given the workload and cost models above, we model the
Internet-scale system as a cost-minimizer. In particular, we
formalize the goal of the Internet-scale system as choosing
the routing policy λt,j,s and the number of active servers xt,s

at each time t so as to minimize the total cost during [1, T ].
This can be written as follows:

min
xt,s,λt,j,s

T
∑

t=1

S
∑

s=1

Et,s + Dt,s + d(xt−1,s, xt,s) (3)

s.t.
∑S

s=1
λt,j,s = λt,j , ∀t, ∀j

λt,j,s ≥ 0, ∀t, ∀j, ∀s

0 = x0,s ≤ xt,s ≤ Ms, ∀t, ∀s

The above optimization problem is jointly convex in λt,j,s

and xt,s, thus in many cases the solution can be found easily
offline, i.e., given all the information in [1, T ]. However, our
goal is to find online algorithms for this optimization, i.e.,
algorithms that determine λt,j,s and xt,s using only informa-
tion up to time t + w where w ≥ 0 is called the “prediction
window”. Based on the structure of optimization (3), we can
see that λt,j,s can be solved easily at timeslot t once xt,s are
fixed. Thus the challenge for the online algorithms is to decide
xt,s online.

D. Generalizations

Although the optimization problem (3) is very general
already, the online algorithms and results in this paper ad-
ditionally apply to the following, more general framework:

min
x1,...,xT

T
∑

t=1

ht(xt) +

T
∑

t=1

d(xt−1, xt) (4)

subject to 0 ≤ xt ∈ R
S , x0 = 0.

where xt has a vector value and {ht(·)} are convex functions.
Importantly, this formulation can easily include various SLA
constraints on mean queueing delay or the queueing delay
violation probability. In fact, a variety of additional bounds on
xt can be incorporated implicitly into the functions ht(·) by

extended-value extension, i.e., defining ht(·) to be ∞ outside
its domain.

To see how the optimization problem (3) fits into this general
framework, we just need to define ht(xt) for feasible xt as the
optimal value to the following optimization over λt,j,s given
xt,s fixed:

min
λt,j,s

∑S

s=1
(Et,s + Dt,s) (5)

s.t.
∑S

s=1
λt,j,s = λt,j , ∀j

λt,j,s ≥ 0, ∀j, ∀s

For infeasible xt (xt,s 6∈ [0, Ms] for some s) we define
ht(xt) = ∞. We can see that the optimal workload dispatching
has been captured by the definition of ht(xt). Note that other
restrictions of workload dispatching may be incorporated by
the definition of ht(xt) similarly.

Intuitively, this general model seeks to minimize the sum
of a sequence of convex functions when “smooth” solutions
are preferred, i.e., it is a smoothed online convex optimiza-
tion problem. This class of problems has many important
applications, including more general capacity provisioning in
geographically distributed data centers, video streaming [30]
in which encoding quality varies but large changes in encoding
quality are visually annoying to users, automatically switched
optical networks (ASONs) in which there is a cost for re-
establishing a lightpath [31], and power generation with dy-
namic demand, since the cheapest types of generators typically
have very high switching costs [32].

E. Performance metric

In order to evaluate the performance of the online algo-
rithms we discuss, we focus on the standard notion of the
competitive ratio. The competitive ratio of an algorithm A is
defined as the maximum, taken over all possible inputs, of
cost(A)/cost(OPT ), where cost(A) is the objective function
of (4) under algorithm A and OPT is the optimal offline
algorithm. In the general context, the “inputs” are the functions
{ht(·)}, which are able to capture the time-varying workload,
electricity price, propagation delays and so on in our geograph-
ical load balancing problem.

Actually the geographical load balancing problem (3) and
the generalization (4) are instances of the class of problems
known as “Metrical Task Systems (MTSs)”. MTSs have re-
ceived considerable study in the algorithms literature, and it
is known that if no further structure is placed on them, then
the best deterministic algorithm for a MTS has competitive
ratio proportional to the number of system states [33], which
is infinity in our problem.

Note that the analytic results of Section III focus on the
competitive ratio, assuming that the service has a finite dura-
tion, i.e. T < ∞, but allowing arbitrary sequences of convex
functions {ht(·)}. Thus, the analytic results provide worst-
case (robustness) guarantees. However, to provide realistic cost
estimates, we also consider case studies using real-world traces
for {ht(·)} in Section IV.

III. ALGORITHMS AND RESULTS

We can now study and design online algorithms for geo-
graphical load balancing. We start by analyzing the perfor-
mance of the classic Receding Horizon Control (RHC). This



uncovers some drawbacks of RHC, and so in the second part of
this section we propose new algorithms which address these.
We defer the proofs to Appendix.

A. Receding Horizon Control (RHC)

RHC is classical control policy [16] that has been proposed
for dynamic capacity provisioning in data centers [14], [15].

Informally, RHC works by, at time τ , solving the cost
optimization over the window (τ, τ+w) given the starting state
xτ−1. Formally, define Xτ (xτ−1) as the vector in (RS)w+1

indexed by t ∈ {τ, . . . , τ + w}, which is the solution to

min
xτ ,...,xτ+w

τ+w
∑

t=τ

ht(xt) +

τ+w
∑

t=τ

d(xt−1, xt) (6)

subject to 0 ≤ xt ∈ R
S .

Algorithm 1 (Receding Horizon Control: RHC). For all t ≤
0, set the number of active servers to xRHC,t = 0. At each
timeslot τ ≥ 1, set the number of active servers to

xRHC,τ = Xτ
τ (xRHC,τ−1). (7)

In studying the performance of RHC there is a clear divide
between the following two cases:

1) The homogeneous setting (S = 1): This setting considers
only one class of servers, and thus corresponds to a single
data center with homogeneous servers. Under this setting,
only the number of active servers is important, not which
servers are active, i.e., xt is a scalar.

2) The heterogeneous setting (S ≥ 2): This setting allows for
different types of servers, and thus corresponds to a single
data center with heterogeneous servers or to a collection
of geographically diverse data centers. Under this setting,
we need to decide the number of active servers of each
type, i.e., xt is a vector.

To start, let us focus on the homogeneous setting (i.e.,
the case of dynamic resizing capacity within a homogeneous
data center). In this case, RHC performs well: it has a small
competitive ratio that depends on the minimal cost of an active
server and the switching cost, and decays to one quickly as
the prediction window grows. Specifically:

Theorem 1. In the homogeneous setting (S = 1), RHC is

(1 + β
(w+1)e0

)-competitive.

Theorem 1 is established by showing that RHC is not
worse than another algorithm which can be proved to be

(1 + β
(w+1)e0

)-competitive. Given Theorem 1, it is natural to

wonder if the competitive ratio is tight. The following result
highlights that there exist settings where the performance of
RHC is quite close to the bound in Theorem 1.

Theorem 2. In the homogeneous setting (S = 1), RHC is not

better than ( 1
w+2 + β

(w+2)e0
)-competitive.

It is interesting to note that [34] shows that a prediction
window of w can improve the performance of a metrical task
system by a factor of at most 2w. If β/e0 ≫ 1 then RHC
is approximately within a factor of 2 of this limit in the
homogeneous case.

The two theorems above highlight that, with enough look-
ahead, RHC is guaranteed to perform quite well in the ho-
mogeneous setting. Unfortunately, the story is different in

the heterogeneous setting, which is required to model the
geographical load balancing.

Theorem 3. In the heterogeneous setting (S ≥ 2), given any
w ≥ 0, RHC is ≥ (1 + maxs(βs/e0,s))-competitive.

In particular, for any w > 0 the competitive ratio in the
heterogeneous setting is at least as large as the competitive
ratio in the homogeneous setting with no predictions (w = 0).
Most surprisingly (and problematically), this highlights that
RHC may not see any improvement in the competitive ratio
as w is allowed to grow.

The proof, given in Appendix D involves constructing a
workload such that servers at different data centers turn on
and off in a cyclic fashion under RHC, whereas the optimal
solution is to avoid such switching. Therefore, {ht(·)} result-
ing in bad competitive ratio are not any weird functions but
include practical cost functions for formulation (3). Note that
the larger the prediction window w is, the larger the number
of data centers must be in order to achieve this worst case.

The results above highlight that, though RHC has been
widely used, RHC may result in unexpected bad performance
in some scenarios, i.e., it does not have “robust” performance
guarantees. The reason that RHC may perform poorly in the
heterogeneous setting is that it may change provisioning due
to (wrongly) assuming that the switching cost would get paid
off within the prediction window. For the geographical load
balancing case, the electricity price based on the availability of
renewable power (e.g., wind or solar) may change dramatically
during a short time period. It is very hard for RHC to de-
cide which data centers to increase/decrease capacity without
knowing the entire future information, thus RHC may have to
change its decisions and shift the capacity among data centers
very frequently, which results in a big switching cost. Notice
that this does not happen in the homogeneous setting where
we don’t need to decide which data center to use, and the new
information obtained in the following timeslots would only
make RHC correct its decision monotonically (increase but
not decrease the provisioning by Lemma 3).

In the rest of this section we propose an algorithm with
significantly better robustness guarantees than RHC.

B. Fixed Horizon Control

In this section, we present a new algorithm, Averaging Fixed
Horizon Control (AFHC), which addresses the limitation of
RHC identified above. Specifically, AFHC achieves a compet-
itive ratio for the heterogeneous setting that matches that of
RHC in the homogeneous setting.

Intuitively, AFHC works by combining w + 1 different bad
algorithms, which each use a fixed horizon optimization, i.e., at
time 1 algorithm 1 solves and implements the cost optimization
for [1, 1 + w], at time 2 algorithm 2 solves and implements
the cost optimization for [2, 2 + w], etc.

More formally, first consider a family of algorithms param-
eterized by k ∈ [1, w + 1] that recompute their provisioning
periodically. For all k = 1, . . . , w + 1, let Ωk = {i : i ≡ k
mod (w+1)}∩ [−w,∞); this is the set of integers congruent
to k modulo w + 1, such that the lookahead window at each
τ ∈ Ωk contains at least one t ≥ 1.

Algorithm 2 (Fixed Horizon Control, version k: FHC(k)). For

all t ≤ 0, set the number of active servers to x
(k)
FHC,t = 0. At



timeslot τ ∈ Ωk, for all t ∈ {τ, . . . , τ + w}, use (6) to set

x
(k)
FHC,t = Xτ

t

(

x
(k)
FHC,τ−1

)

. (8)

For notational convenience, we often set x(k) ≡ x
(k)
FHC .

Note that for k > 1 the algorithm starts from τ = k− (w +1)

rather than τ = k in order to calculate x
(k)
FHC,t for t < k.

FHC can clearly have very poor performance. However,
surprisingly, by averaging different versions of FHC we obtain
an algorithm with better performance guarantees than RHC.
More specifically, AFHC is defined as follows.

Algorithm 3 (Averaging FHC: AFHC). At timeslot τ ∈ Ωk,

use FHC(k) to determine the provisioning x
(k)
τ , . . . , x

(k)
τ+w, and

then set xAFHC,t =
∑w+1

n=1 x
(n)
t /(w + 1).

Intuitively, AFHC seems worse than RHC because RHC
uses the latest information to make the current decision and
AFHC relies on FHC which makes decisions in advance, thus
ignoring some possibly valuable information. This intuition is
partially true, as shown in the following theorem, which states
that RHC is not worse than AFHC for any workload in the
homogeneous setting (S = 1).

Theorem 4. In the homogeneous setting (S = 1),
cost(RHC) ≤ cost(AFHC).

Though RHC is always better than AFHC in the homoge-
neous setting, the key is that AFHC can be significantly better
than RHC in the heterogeneous case, even when S = 2.

Theorem 5. In heterogeneous setting (S ≥ 2), there exist
convex functions {ht(·)} such that

cost(RHC) > cost(AFHC).

Moreover, the competitive ratio of AFHC is much better
than that of RHC in the heterogeneous case.

Theorem 6. In both the homogeneous setting and the hetero-

geneous setting, AFHC is
(

1 + maxs
βs

(w+1)e0,s

)

-competitive.

The contrast between Theorems 3 and 6 highlights the
improvement AFHC provides over RHC. In fact, AFHC has
the same competitive ratio in the general (possibly heteroge-
neous) case that RHC has in the homogeneous case. So, AFHC
provides the same robustness guarantee for geographical load
balancing that RHC can provide for a homogeneous local data
center.

IV. CASE STUDIES

In the remainder of the paper, we provide a detailed study
of the performance of the algorithms described in the pre-
vious section. Our goal is threefold: (i) to understand the
performance of the algorithms (RHC and AFHC) in realistic
settings; (ii) to understand the potential environmental benefits
of using geographical load balancing to implement “follow
the renewables” routing; and (iii) to understand the optimal
portfolio of renewable sources for use within an Internet-scale
system.

A. Experimental setup

This study uses the setup similar to that of [10], based on
real-world traces for data center locations, traffic workloads,
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Fig. 1. HP workload traces.

renewable availability, energy prices, etc, as described below.2

1) The workload: We consider 48 sources of requests, with
one source at the center of each of the 48 continental US states.
We consider 10-minute time slots over two days.

The workload λt is generated from two traces at Hewlett-
Packard Labs [6] shown in Figure 1. These are scaled propor-
tional to the number of internet users in each state, and shifted
in time to account for the time zone of that state.

2) The availability of renewable energy: To capture the
availability of solar and wind energy, we use traces with
10 minute granularity from [35], [36] for Global Horizontal
Irradiance (GHI) scaled to average 1, and power output of
a 30kW wind turbine. The traces of four states (CA, TX,
IL, NC) are illustrated in Figure 2. Note that we do not
consider solar thermal, because of the significant infrastructure
it requires. Since these plants often incorporate a day’s thermal
storage [37], the results could be very different if solar thermal
were considered.

These figures illustrate two important features of renewable
energy: spatial variation and temporal variation. In particular,
wind energy does not exhibit a clear pattern throughout the day
and there is little correlation across the locations considered.
In contrast, solar energy has a predictable peak during the day
and is highly correlated across the locations.

In our investigation, we scale the “capacity” of wind and
solar. When doing so, we scale the availability of wind and
solar linearly, which models scaling the number of generators
in a wind farm or solar installation, rather than the capacity of
each. We measure the “capacity” c of renewables as the ratio
of the average renewable generation to the minimal energy
required to serve the average workload. Thus, c = 2 means that
the average renewable generation is twice the minimal energy
required to serve the average workload. We set capacity c = 1
by default, but vary it in Figures 5 and 7.

3) The Internet-scale system: We consider the Internet-
scale system as a set of 10 data centers, placed at the centers
of states known to have Google data centers [38], namely
California, Washington, Oregon, Illinois, Georgia, Virginia,
Texas, Florida, North Carolina, and South Carolina. Data
center s contains Ms homogeneous servers, where Ms is set
to be twice the minimal number of servers required to serve
the peak workload of data center s under a scheme which
routes traffic to the nearest data center. Further, the renewable
availability at each data center is defined by the wind/solar
trace from a nearby location, usually within the same state.

2Note that the setup considered here is significantly more general than that
of [10], as follows. Most importantly, [10] did not model switching costs
(and so did not consider online algorithms). Additionally, the current work
investigates the optimal renewable portfolio more carefully, using multiple
traces and varying the renewable capacity among other things.
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Fig. 2. Renewable generation for two days.

We set the energy cost as the number of active servers
excluding those that can be powered by renewables. Note that
this assumes that data centers operate their own wind and solar
generations and pay no marginal cost for renewable energy.
Further, it ignores the installation and maintenance costs of
renewable generation. Quantitatively, if the renewable energy
available at data center s at time t is rt,s, measured in terms of
number of servers that can be powered, then the energy cost
of data center s at time t is

Et,s = ps(xt,s − rt,s)
+. (9)

Here ps for each data center is constant, and equals to the
industrial electricity price of each state in May 2010 [39].
This contrasts with the total power cost psxt,s typically used
without owning renewable generation.

For delay cost, we set the round-trip network delay δt,j,s

to be proportional to the distance between source and data
center plus a constant (10 ms), resulting in round-trip delays in
[10 ms, 260 ms]. We model the queueing delays using parallel
M/GI/1/Processor Sharing queues with the total load

∑

j λt,j,s

divided equally among the xt,s active servers, each having
service rate µs = 0.2(ms)−1. Therefore, the delay cost of data
center s at time t is

Dt,s = γ
∑

j

λt,j,s

(

1

µs −
∑

j λt,j,s/xt,s

+ δt,j,s

)

. (10)

Here we consider linear lost revenue function rt(d) = γd,
where γ is set to be 1. Measurements [40] show that a 500 ms
increase in delay reduces revenue by 20%, or 0.04%/ms. To get
a conservative estimate of the benefit from geographical load
balancing, we pick γ = 1, which is slightly higher than [40], so
that the penalty for the propagation delay of geographical load
balancing is high compared to the benchmark policy. Later we
scale ps (with γ = 1 corresponding to the default setting) in
Figure 4(a) to show the impact of relative energy cost to delay
cost as energy price possibly goes high in future, or the delay
penalty is lower for the systems.

For the switching cost, we set β = 6 by default, which
corresponds to the operating cost of an idle server for about
half an hour to one hour. We vary β in Figure 4(b) to show
its impact on cost saving. For the prediction window, we set
w = 3 by default, which corresponds to half an hour prediction
of workload and renewable generation. We vary w in Figure
3 to examine its impact on cost saving.

4) Algorithms: We use optimization (3) with energy cost
(9) and delay cost (10) for the geographical load balancing.
We use “GLB” to denote the offline optimal solution to (3).
The online solutions of algorithms Receding Horizon Control
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Fig. 3. Total cost, normalized by the cost of OPT, versus prediction window
under RHC and AFHC
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Fig. 4. Impact of the energy price and switching cost when the total renewable
capacity is c = 1.

and Averaging Fixed Horizon Control are denoted by “RHC”
and “AFHC”, respectively.

As a benchmark for comparison, we consider a system
that does no geographical load balancing, but instead routes
requests to the nearest data center and optimally adjusts the
number of active servers at each location. We call this system
‘LOCAL’ and use it to illustrate the benefits that come from
using geographical load balancing.

B. Experimental results

With the foregoing setup, we performed several numerical
experiments to evaluate the feasibility of moving toward
Internet-scale systems powered (nearly) entirely by renewable
energy and the optimal portfolios.

1) The performance of RHC and AFHC: Geographical load
balancing is known to provide Internet-scale system operators
cost savings. Let us first study the cost saving from geograph-
ical load balancing and how much of it can be achieved by the
online algorithms RHC and AFHC. Figure 3(a) shows the total
cost in the bad scenario with an artificial workload used in the
proof of Theorem 3 (with J = (w +1)2 types of jobs), which
illustrates that AFHC may have much better performance in
the worst case. The degradation in the performance of RHC
as w grows is because J also grows. In contrast, Figure 3(b)
shows the total cost of RHC and AFHC (with default settings
but β = 6 min(ps), the same as in the bad scenario) under
HP Trace 1. We can see that both RHC and AFHC are nearly
optimal for the real workload. Figure 3 confirms that AFHC is
able to provide worst case guarantee without giving up much
performance in common cases.

This behavior under real workload is further illustrated in
Figure 4, which shows the total cost under GLB, RHC, AFHC,
and LOCAL as energy price or switching cost is increased.
The cost saving of GLB over LOCAL becomes large when
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Fig. 5. Impact of the renewable capacity when solar percentage is 20%.
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Fig. 6. Impact of the mix of renewable energy used.

the energy price is high because GLB can save a great deal
of energy cost at the expense of small increases in network
delay since requests can be routed to where energy is cheap
or renewable generation is high. Moreover, the cost saving of
GLB, RHC and AFHC over LOCAL looks stable for a wide
range of switching cost.

2) The impact of geographical load balancing: Geograph-
ical load balancing is much more efficient at using renewable
supply than LOCAL because it can route traffic to the data
center with higher renewable generation. Figure 5 illustrates
the differences of brown energy usage as a function of the
capacity of renewable energy for both traces. The brown
energy consumption is scaled so that the consumption is 1
when there is no renewable (c = 0). Interestingly, Figure 5
highlights that when there is little capacity of renewables,
both GLB and LOCAL can take advantage of it, but that
as the capacity of renewables increases GLB is much more
efficient at using it, especially for Trace 1. This is evident
by the significantly lower brown energy consumption of GLB
that emerges at capacities > 1. For Trace 1 in Figure 5(a), the
capacities of renewables necessary to reduce brown energy
usage to 20% and 10% under LOCAL are 1.9 and 4.3,
respectively, while those required under GLB are only 1.5
and 2.3. Similar reductions can be observed for Trace 2 in
Figure 5(b).

As in Figures 3(b) and 4, the performance of RHC and
AFHC is again quite close to that of the optimal solution
GLB, which reinforces that both RHC and AFHC are nearly
optimal in common cases. Therefore we will show only GLB
and LOCAL for the remaining experiments.

3) The optimal renewable portfolio: We now move to the
question of what mix of solar and wind is most effective. A
priori, it seems that solar may be the most effective, since the
peak of solar availability is closely aligned with that of the data
center workload. However, the fact that solar is not available
during the night is a significant drawback, which makes wind
necessary to power the data centers during night. Our results
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Fig. 7. Optimal portfolios for different PMRs and capacities.

lend support to the discussion above. For each data center
under LOCAL, the optimal wind percentage is quite different
for each location because of different renewable generation
qualities, as shown in Figure 6(a). There are also similarities
for different locations, e.g., the optimal portfolios contain both
solar and wind, and wind has a large percentage, 60%- 90%.

Once GLB is used, it becomes possible to aggregate wind
availability across geographical locations. This makes wind
more valuable since wind is not correlated across large geo-
graphical distances, and so when aggregated, the availability
smoothes. As illustrated in Figure 6(b), the optimal renewable
portfolio for Trace 1 contains 80% wind. We can also see that
the optimal portfolio is affected significantly by the workload
characteristics. Compared with Trace 1, Trace 2 has less base
load during night, requiring less wind generation.

The impact of workload characteristics becomes more
clear in Figure 7, where we use loads λ′

j,t = λα
j,t, α =

1, 1.25, 1.5, 1.75, 2, to get different Peak-to-Mean ratios. For
large diurnal Peak-to-Mean ratios the optimal portfolio can be
expected to use a higher percentage of solar because solar peak
is closely aligned with the workload peak, which is validated
in Figure 7. Also, when renewable capacity is fairly large and
we plan to install extra capacity, since solar generation can
already provide enough power to serve the workload peak
around noon, the increased renewable capacity can then be
almost from wind generation to serve the workload during
other times, especially night. This will make the solar ratio
lower in the optimal portfolios, which can be seen from the
lines of different renewable capacities in Figure 7.

V. CONCLUDING REMARKS

This paper studies online algorithms for geographical load
balancing problem in Internet-scale systems via both theo-
retical analysis and trace-based experiments. We show that
the classical algorithm, Receding Horizon Control (RHC),
works well in homogeneous setting (where all servers are
equally able to serve every request). However, in general,
RHC can perform badly for the heterogeneous settings needed
for geographical load balancing. Motivated by the weakness
of RHC, we design a new algorithm called Averaging Fixed
Horizon Control (AFHC) which guarantees good performance.
We evaluate RHC and AFHC under workloads measured on
a real data center. The numerical results show that RHC
and AFHC are nearly optimal for our traces, which implies
that the improvement in worst-case performance of AFHC
comes at negligible cost to the average-case performance.
The experiments also reveal vital role of geographical load
balancing in reducing brown energy consumption to (nearly)
zero. We also perform a detailed study on the impact of



workload characteristics and renewable capacity on the optimal
renewable portfolio under GLB.
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APPENDIX

A. Notation

We first introduce some additional notation used in the
proofs. For brevity, for any vector y we write yi..j =
(yi, . . . , yj) for any i ≤ j.

Let x∗ denote the offline optimal solution to optimization
(4), and OPT be the algorithm that uses x∗. Further, let X be
the result of RHC, and recall that x(k) is the result of FHC(k).

Let the cost during [t1, t2] with boundary conditions be

gt1,t2(x; xS ; xE) =

t2
∑

t=t1

ht(xt) + d(xS , xt1) (11)

+

t2
∑

t=t1+1

d(xt−1, xt) + d(xt2 , xE).

If xE is omitted, then by convention xE = 0 (and thus
d(xt2 , xE) = 0). If xS is omitted, then by convention
xS = xt1−1. Note that gt1,t2(x) depends on xi only for
t1 − 1 ≤ i ≤ t2.

For any algorithm A ∈ {RHC, FHC, AFHC, OPT }, the
total cost is cost(A) = g1,T (xA).

B. Proof of Theorems 6

Lemma 1. Since d(·) satisfies triangle inequality, we have

cost(FHC(k)) ≤ cost(OPT ) +
∑

τ∈Ωk

d(x
(k)
τ−1, x

∗
τ−1).



Proof: For every k = 1, . . . , w + 1 and every τ ∈ Ωk,

gτ,τ+w(x(k)) =

τ+w
∑

t=τ

ht(x
(k)
t ) +

τ+w
∑

t=τ

d(x
(k)
t−1, x

(k)
t )

≤

τ+w
∑

t=τ

ht(x
∗
t ) +

τ+w
∑

t=τ+1

d(x∗
t−1, x

∗
t )

+ d(x
(k)
τ−1, x

∗
τ−1) + d(x∗

τ−1, x
∗
τ )

=gτ,τ+w(x∗) + d(x
(k)
τ−1, x

∗
τ−1). (12)

Summing the above over τ ∈ Ωk, establishes the lemma.
Proof of Theorem 6: Substituting d(x, y) = β · (y − x)+

into Lemma 1, by the convexity of ht (and thus g1,T ),

cost(AFHC)

cost(OPT )
≤

1

w + 1

w+1
∑

k=1

g1,T (x(k))

cost(OPT )

≤ 1 +
β ·
∑T

t=1 x∗
t−1

(w + 1)cost(OPT )
≤ 1 +

β ·
∑T

t=1 x∗
t−1

(w + 1)
∑T

t=1 ht(x∗
t )

≤ 1 +
β ·
∑T

t=1 x∗
t−1

(w + 1)e0 ·
∑T

t=1 x∗
t

≤ 1 + max
s

βs

(w + 1)e0,s

where the second step uses Lemma 1, and the last step uses

the facts that βi/e0,i ≤ maxs βs/e0,s, and 0 ≤
∑T

t=1 x∗
t−1 ≤

∑T

t=1 x∗
t elementwise as x∗

0 = 0.

C. Proofs of Theorems 1 and 4

The following lemma says that the optimal solution on [i, j]
is non-decreasing in the initial condition xi−1 and the final
condition xj+1.

Lemma 2. Let S = 1. Given constants xi−1, xj+1 ∈
R, let xij = (xij

i , . . . , xij
j ) be a vector minimizing

gi,j(x; xi−1; xj+1). Then for any x̂i−1 ≥ xi−1 and x̂j+1 ≥
xj+1, there exists a vector x̂ij = (x̂ij

i , . . . , x̂ij
j ) minimizing

gi,j(x; x̂i−1; x̂j+1) such that x̂ij ≥ xij .

Proof: Since xij and x̂ij minimize their respective ob-
jectives, we have gi,j(x

ij ; xi−1; xj+1) ≤ gi,j(x̂
ij ; xi−1; xj+1)

and gi,j(x̂
ij ; x̂i−1; x̂j+1) ≤ gi,j(x

ij ; x̂i−1; x̂j+1). If there is an
xij such that the latter holds with equality, then we can choose

x̂ij
i = xij

i and consider the problem with gi+1,j recursively.
Otherwise, i.e., the latter is a strict inequality, summing the
two inequalities and canceling terms gives

(xij
i −xi−1)

++ (x̂ij
i −x̂i−1)

++ (x̂j+1−x̂ij
j )++ (xj+1−xij

j )+

<(x̂ij
i −xi−1)

++ (xij
i −x̂i−1)

++ (x̂j+1−xij
j )++ (xj+1−x̂ij

j )+.

Since x̂i−1 ≥ xi−1 and x̂j+1 ≥ xj+1, it follows that

either xij
i < x̂ij

i or xij
j < x̂ij

j , by the submodularity of

φ(x, y) = (x−y)+. In either case, we can continue recursively,
considering gi+1,j in the former case or gi,j−1 in the latter.

Finally we have x̂ij ≥ xij .
The next technical lemma says that RHC has larger solutions

than related algorithms that look less far ahead.

Lemma 3. Consider a system in the homogeneous setting
(S = 1), and constants t, Xt−1 ≥ x̃t−1 ≥ 0, and k ∈
[t, t + w]. Let x̃ = (x̃t, . . . , x̃k) minimize gt,k(x; x̃t−1), and
let X = xRHC . Then x̃ ≤ Xt..k.

Proof: The proof is by induction. By hypothesis, x̃t−1 ≤
Xt−1. We need to prove that if x̃τ−1 ≤ Xτ−1, then x̃τ ≤ Xτ .

Notice that x̃τ is the first entry of a vector minimizing
gτ,k(x; xτ−1). Similarly Xτ is the first entry of a vector
minimizing gτ ;τ+w(x, Xτ−1). If k = τ +w, we have x̃τ ≤ Xτ

by Lemma 2 and the tie-break rule of RHC. Otherwise, i.e.,
k < τ + w, we know that Xτ is the first entry of a vector
minimizing gτ,k(x; Xτ−1; x

′
k+1) with x′

k+1 ≥ 0. By Lemma
2 and the RHC tie-break we again have x̃τ ≤ Xτ .

Next comes the first main lemma used to prove Theorem 4.

Lemma 4. In the homogeneous setting (S = 1), each version
k of FHC allocates fewer servers than RHC:

x
(k)
FHC ≤ xRHC . (13)

Hence xAFHC ≤ xRHC .

Proof: Let X = xRHC be the result of RHC, and x =

x
(k)
FHC . The proof is by induction. By definition, x0 = X0 = 0.

To see that xτ−1 ≤ Xτ−1 implies xτ ≤ Xτ , notice that xτ is
the first entry of a vector minimizing gτ,k(x; xτ−1) for some
k ∈ [τ, τ + w], with k + 1 ∈ Ωk. The implication follows
by Lemma 3 and establishes (13). The proof for xAFHC is
immediate.

Lemma 5. In the homogeneous setting (S = 1), for any given
vector x ≤ xRHC , we have g1,T (xRHC) ≤ g1,T (x).

Proof: Denote X = xRHC . It is sufficient to construct
a sequence of vectors ξτ such that: ξ1 = x, ξτ

t = Xt for
t < τ , and g1,T (ξτ ) is nonincreasing in τ . The sequence can be
constructed inductively with the additional invariant ξτ ≤ X
as follows.

At stage τ , we calculate ξτ+1. Apply RHC to get
Xτ (Xτ−1) = (x̃τ , . . . , x̃τ+w). Note that x̃τ = Xτ ≥ ξτ

τ since
ξτ ≤ X by the inductive hypothesis. Moreover x̃τ..τ+w ≤
Xτ..τ+w by Lemma 3.

If x̃τ..τ+w ≥ ξτ
τ..τ+w elementwise, then replace elements τ

to τ + w in ξτ to get ξτ+1 = (ξτ
1..τ−1, x̃τ..τ+w, ξτ

τ+w+1..T ) ≥
ξτ . Then g1,τ+w(ξτ+1) ≤ g1,τ+w(ξτ ) by the optimality
of x̃τ..τ+w. Since ξτ

τ+w ≤ x̃τ+w and d(x, y) = β(y −
x)+ is non-increasing in its first argument, we also have
gτ+w+1,T (ξτ+1) ≤ gτ+w+1,T (ξτ ). Therefore, g1,T (ξτ+1) ≤
g1,T (ξτ ). Finally, to see that ξτ+1 ≤ X , note that ξτ ≤ X
and x̃τ..τ+w ≤ Xτ..τ+w as remarked above.

Otherwise, let k ∈ [τ +1, τ +w] be the minimum index that
x̃k < ξτ

k . Let ξτ+1 = (ξτ
1..τ−1, x̃τ..k−1, ξ

τ
k..T ) ≥ ξτ . Note that

k ≥ τ + 1 since x̃τ = Xτ ; this ensures ξτ
t = Xt for t < τ .

Again, ξτ+1 ≤ X as in the previous case. It remains to prove
g1,T (ξτ+1) ≤ g1,T (ξτ ).

Let uA = ξτ
τ..k−1, uB = ξτ

k..τ+w, ũA = x̃τ..k−1 and
ũB = x̃k..τ+w. Let vectors (uA, uB), (ũA, uB), (uA, ũB) and
(ũA, ũB) be indexed by t ∈ {τ, . . . , τ + w}. To see how
replacing ξτ

τ...k−1 by x̃τ...k−1 affects the cost in [1, T ], note

g1,T (ξτ+1) − g1,T (ξτ )

= gτ,τ+w((ũA, uB)) − gτ,τ+w((uA, uB)).

Now since x̃k < ξτ
k , x̃k−1 ≥ ξτ

k−1 and φ(x, y) = (x − y)+ is



submodular, we have

(gτ,τ+w((ũA, uB)) − gτ,τ+w((uA, uB)))

+ (gτ,τ+w((uA, ũB)) − gτ,τ+w((ũA, ũB))) (14)

= β
(

(ξτ
k − x̃k−1)

+ − (ξτ
k − ξτ

k−1)
+

+ (x̃k − ξτ
k−1)

+ − (x̃k − x̃k−1)
+
)

≤ 0.

But since (ũA, ũB) optimizes (6), we have

gτ,τ+w((uA, ũB)) − gτ,τ+w((ũA, ũB)) ≥ 0.

Thus the first bracketed term in (14) is non-positive, whence

g1,T (ξτ+1) − g1,T (ξτ ))

≤ gτ,τ+w((ũA, uB)) − gτ,τ+w((uA, uB))

≤ 0.
Proof of Theorem 4: By Lemma 4 and AFHC, we have

x̂ ≤ xRHC . By Lemma 5, g1,T (xRHC ) ≤ g1,T (x̂).
Proof of Theorem 1: The bound on the competitive ratio

of RHC follows from Theorems 4 and 6.

D. “Bad” instances for Receding Horizon Control (RHC)

We now prove the lower bound results in Section III by
constructing instances that force RHC to incur large costs.

Proof of Theorem 2: Consider the operating cost
ht(xt) = e0xt for λt ≤ xt and ht(xt) = ∞ for λt > xt.
Note that this cost function is convex. Now consider the arrival
pattern λ = {λt}1≤t≤T where λk(w+2)+1 = Λ > 0 for
k = 0, 1, . . . and other λt are all 0. It is easy to see that
RHC will give the provisioning Xk(w+2)+1 = Λ and Xt = 0
for other t. Thus we have

g1,T (X) =
T

w + 2
Λe0 +

T

w + 2
βΛ.

Now consider another provisioning policy x̂ = {x̂t =
Λ}1≤t≤T . Its cost is g1,T (x̂) = TΛe0 + βΛ. Thus

g1,T (X)/g1,T (x∗) ≥ g1,T (X)/g1,T (x̂)

=
e0 + β

(w + 2)(e0 + β/T )
∼

1

w + 2
+

β

(w + 2)e0

as T → ∞.
Note that the cost function in the proof of Theorem 2 is

applicable to data centers that impose a maximum load on
each server (to meet QoS or SLA requirements).

Proof of Theorem 5: When S = 2, the following
geographical load balancing instance causes cost(AFHC) <
cost(RHC).

Choose constants f1 > f2 and β1 < β2 such that (w +
1)f1 < (w + 1)f2 + β2 < (w + 1)f1 + β1 and wf1 + β1 <
wf2 + β2. These can simultaneously be achieved by choosing
an arbitrary f1 − f2 > 0, then choosing β2 − β1 ∈ (w, w +
1)(f1 − f2), and then β2 > (w + 1)(f1 − f2).

Let the switching cost for data center i be βi. Let the
operating cost be ht(xt) = f1xt,1 +f2xt,2 for λt ≤ xt,1 +xt,2

and ht(xt) = ∞ for λt > xt,1 + xt,2. Note that this function
is convex. In this system, the servers in the second data center
have lower operating cost but higher switching cost (e.g., more
expensive, energy-efficient severs).

Choose constants T > w+max(1, β2/(f1−f2)), and Λ > 0.
Now consider the cost of schemes AFHC and RHC under

the load such that: (a) λw+1 = 0, (b) λt = Λ for all other
t ∈ [1, T ], and (c) λt = 0 for t 6∈ [1, T ].
Under AFHC: At time t = 1, FHC(1) sees λ1, . . . , λw+1 and
so uses Λ servers in data center 1 for the first w timeslots and
turns off all servers at timeslot w+1. From timeslot t = w+2
onwards, it sees λ = Λ until time T , and so uses Λ servers in
data center 2 until T .

For 2 ≤ i ≤ w + 1, FHC(i) initially sees a window of
loads in which w or fewer time slots have non-zero load, and
so again chooses servers in data center 1. However, the last
slot in the first window, slot i− 1, has load Λ, and so servers
remain on. In the second and subsequent windows, the cost of
switching is greater than uses servers in data center 1 until T .
Thus its total cost is

cost(AFHC) =
w

w + 1
(f1ΛT + β1Λ)

+
1

w + 1
(f1Λw + β1Λ + f2Λ(T − w − 1) + β2Λ).

Under RHC: RHC uses only servers in data center 1 forever,
for the same reason as FHC(i) for 2 ≤ i ≤ w + 1. Thus its
total cost is

cost(RHC) = f1ΛT + β1Λ

The choice of T implies f1(T − w) > f2(T − w − 1) + β2,
and thus cost(AFHC) < cost(RHC).

Proof of Theorem 3: The proof will be by construction.
Consider an Internet-scale system with S data centers and J
types of jobs (e.g., workload from different locations). Let
J ≥ S ≫ w. Let the switching cost for servers in data
center s be βs = β0 + 2ǫsw. Denote the type-j workload
at time t by λt,j (j ∈ {1, . . . , J}). Let the operating cost be

ht(xt) =
∑S

s=1(e0−sǫ+C
∑J

l=s+1 λt,l)xt,s for
∑S

s=1 xt,s ≥
∑J

j=1 λt,j and ht(xt) = ∞ otherwise, where ǫ > 0 is a small
constant and C > maxs βs is a large constant. Intuitively, this
operating cost function means that servers in data center s
consume a little bit more energy when s is smaller, and they are
very inefficient at processing workload of types higher than s.
Also, the switching cost increases slightly as s increases. This
may occur if all servers use roughly the same hardware, but
data center s store locally only data for jobs of types 1 to s.

Consider the workload trace which has λt,1 = Λ for t =
1, . . . , w+1 and λt,t−w = Λ for t = w+2, . . . , w+S. All the
other arrival rates λt,j are zero. Then RHC would start with
Λ servers in data center 1 (the cheapest to turn on) at timeslot
1, and then at each t ∈ [2, S] would switch off servers in
data center (t− 1) and turn on Λ servers in data center t (the
cheapest way to avoid the excessive cost of processing type t
jobs using servers in data center s with s < t). For sufficiently
small ǫ, the optimal solution always uses Λ servers in data
center S for t ∈ [1, w+S]. Therefore the total costs in [1, w+
S] for small ǫ are cost(RHC) = Λ(w +S)e0 +ΛSβ0 +O(ǫ)
and cost(OPT ) = Λ(w + S)e0 + Λβ0 + O(ǫ). Therefore,

cost(RHC)

cost(OPT )
= 1 +

(S − 1)β0

(w + S)e0 + β0
+ O(ǫ).

For S ≫ w and Se0 ≫ β0 and small ǫ, this ratio will approach
1 + β0/e0, which implies the result.


